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Abstract. The quantum mechanical problem of motion in the dual charged Coulomb field
modified by a centrifugal term (MIC-Kepler problem) is considered in the three-dimensional space
of constant positive curvature S3. Conserved operators in this problem form a cubic algebra similar
to that of the Kepler problem on S3. The explicit form of invariants of this algebra shows that its
representation associated with the MIC-Kepler problem on S3 is a nondegenerate one. The cubic
symmetry algebra is used to obtain the energy spectrum of the problem.

1. Introduction

The study of the problem of motion in the dual charged Coulomb field with an additional
inverse-square potential in flat space has a long history. It was independently introduced
in [1, 2] and then intensively studied by Iwai and Uwano [3] both from the classical and
quantum points of view. These authors were the first to use the term ‘MIC-Kepler’ for this
problem. The geometric quantization approach to this problem has been discussed in [4]. The
higher-dimensional generalization of the problem has also been considered [5]. One of the
main points in these investigations has been to consider the symmetry group of the problem.
It is known that the Kepler and MIC-Kepler problems in R3 are quite similar. Both problems
have an O(4, 2) group of the dynamical symmetry and the quantum mechanical Hamiltonians
of these problems have a hydrogen-like form (see [6,7]). Also, these problems have the same
structure of the conserved operators which form the O(4) group.

In this paper we consider the MIC-Kepler problem in the three-dimensional spaces of
constant curvature, and in particular on the sphere S3. We show that the MIC-Kepler problem
in these spaces possesses all these similarities with the Kepler problem on spaces of constant
curvature. In particular, we show that the conserved quantum mechanical operators of the
Runge–Lenz type, together with the generalized angular momentum operator, form a nonlinear
(cubic) algebra similar to that of the Kepler problem on S3. For this reason first of all we give
a brief review of this last problem.

The quantum mechanical Kepler problem in a three-dimensional space S3 of constant
positive curvature was first considered by Schrödinger [8], and in the space H 3 of constant
negative curvature by Infeld and Schild [9]. These authors found the energy spectrum to be
degenerate, similar to that in flat space. An additional constant of motion, an analogue of
the Runge–Lenz vector, which is the cause of this degeneration, was found in [10–12] for the
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problem on the sphere S3, and in [13] for the Lobachevsky space H 3. As was noted in [12],
these operators, together with angular momentum, generate an algebraic structure which may
be considered as a nonlinear extension of the Lie algebra, and which was referred to in [14] as
a cubic algebra.

Recently, the Kepler problem on the sphere S3 has been used as a model for the description
of quarkonium spectra [15], and exitons in quantum dots [16]. Many aspects of this problem
in spaces S3 and H 3, in particular separation of variables and path integral formulation, have
been investigated in [14, 17–19].

We write the Schrödinger equation for the Kepler problem on the sphere S3 as

Hψ = Eψ H = − 1

4R2
MµνMµν − α

R

x4

|x| (1)

where
x = {x1, x2, x3} Mµν = xµ∂ν − xν∂µ

xµxµ = x2 + x2
4 = R2 µ, ν = 1, 2, 3, 4

(2)

xµ are coordinates in a four-dimensional flat space into which the sphere is embedded, and R

denotes the radius of curvature. We use units such that h̄ = m = 1. Note that the operator
MµνMµν/2R2 coincides with the Laplacian operator on S3 and MµνMµν/2 is the Casimir
operator of the geometric O(4) group. Three generators, −iMab (a, b = 1, 2, 3), constitute
the angular momentum vector L and three generators, −iMa4 = Pa , are the boost generators on
the sphere. The spectrum of this problem is En = −α2/2n2 + (n2 −1)/2R2, (n = 1, 2, 3, . . .).
The Hamiltonian H commutes with the angular momentum operator

La = −iεabcxb∂c a, b, c = 1, 2, 3 (3)

and with the analogue of the Runge–Lenz operators:

Aa = 1

2R
εabc(LbPc − PbLc) +

αxa

|x| . (4)

These operators form a nonlinear (cubic) algebra with an o(3) subalgebra generated by La:

[Aa,Ab] = −2i

(
H − L2

R2

)
εabcLc

[La,Ab] = iεabcAc [La,Lb] = iεabcLc.

(5)

Recently the algebras of this type have been intensively studied [20] in the context of symplectic
reduction of Lie algebras and called finite W algebras by analogy with infinite-dimensional W
algebras that appeared in conformal field theories. The algebra (5) is some deformation of the
so(4) algebra and has a coset structure gd = h + vd , where h is an o(3) algebra [21, 22]. The
Casimir operators and some unitary irreducible representations for these algebras have been
constructed in [22]. For the case of the algebra (5) the first and second Casimir operators in
the notation of [22] are

C1d = aL2 + bL4 + A2 C2d = LA

a = −2H +
2

R2
b = 1

R2
.

(6)

But from the expression (4) one can find that

A2 = 2H(L2 + 1) − 1

R2
L2(L2 + 2) + α2 AL = LA = 0 (7)

and therefore C1d = 2H + α2 and C2d = 0. Thus the Kepler problem in a space of constant
curvature S3 realizes some degenerate unitary irreducible representation of cubic algebra (5),
similar to the way that the flat Kepler problem realizes a degenerate representation of O(4).
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It will be shown in section 3 that the MIC-Kepler problem on the sphere S3 realizes more
general (nondegenerate) unitary representations of the cubic algebra (5).

This paper is organized as follows. In section 2 we consider the Dirac-like potential
on S3 as a solution of the Maxwell equations with radial magnetic field. Then we define a
Hamiltonian of the MIC-Kepler problem on the sphere S3 and obtain conserved Runge–Lenz
type quantities which form a cubic algebra. By using this algebra in section 3 we obtain the
spectrum of the MIC-Kepler problem on the sphere S3.

2. The Hamiltonian of the MIC-Kepler problem on S3

The most natural way to define the Dirac-like potential in a three-dimensional space of constant
curvature is to solve the Maxwell equations in this space with a Coulomb-type magnetic field.
The Dirac monopole in curved spaces has been considered in [24] where it was shown that the
curvature of the background space plays no role in the quantization of the magnetic charge of
the test particle.

Consider a dual charged test particle with unit mass, and charges (e0, g0) moving at
nonrelativistic velocity on the sphere S3 in the electric field �E and magnetic field �H of a
stationary dual charged particle with charges (e, g) situated at the origin. We adopt the
following abbreviations: α = (e0e+g0g) andµ = (e0g−eg0). Quantization of the component
of the angular momentum leads to the condition µ = n/2 where n is an integer. At first we
consider the case for which the charge e = 0 and therefore the electric field �E = 0.

It is convenient to use the four-dimensional spherical coordinates:

x1 = R sin χ sin θ sin φ x2 = R sin χ sin θ cosφ

x3 = R sin χ cos θ x4 = R cosχ (8)

0 � χ � π 0 � θ � π 0 � φ � π.

The metric of sphere S3 in these coordinates is

ds2 = R2(dχ2 + sin2 χ dθ2 + sin2 χ sin2 θ dφ2). (9)

The Maxwell equations for the magnetic field �H in these coordinates take the form

∇ · �H = (R sin2 χ sin θ)−1[∂χ(sin2 χ sin θHχ) + ∂θ (sin χ sin θHθ) + ∂φ(sin χHφ)] = 0
( �∇ × �H)χ = (R sin χ sin θ)−1[∂θ (sin θHφ) − ∂φHθ ] = 0
( �∇ × �H)θ = −(R sin χ sin θ)−1[∂χ(sin θ sin χHφ) − ∂φHφ] = 0
( �∇ × �H)φ = (R sin χ)−1[∂χ(sin χHθ) − ∂θHχ ] = 0.

(10)

These equations have a Coulomb-type magnetic field solution:

Hφ = 0 Hθ = 0 Hχ = µ/(R2 sin2 χ). (11)

Integration of the equations for the corresponding potential

�∇ × �A = �H �∇ · �A = 0 (12)

gives the Dirac monopole-like potential as a particular solution:

Aχ = Aθ = 0 Aφ = µ tan θ/2

R sin χ
. (13)

The solution is valid everywhere except for the singularity line θ = π which connects points
χ = 0 and χ = π . In fact, this solution describes the field of two magnetic charges with
opposite signs situated at points χ = 0 and χ = π and connected by the singularity line. It is
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worth noting that the electric Coulomb field considered by Schrödinger [8] is also created by
two electric charges located at opposite points of S3.

In the coordinates x = {x1, x2, x3} the metric of the sphere is ds2 = (dx)2+(x dx)2/(R2−
x2) and the potential (13) has a form similar to that in R3:

A1(�x) = µ
−x2

|x|(|x| + x3)
A2(�x) = µ

x1

|x|(|x| + x3)
A3(�x) = 0. (14)

Now we consider a corresponding quantum mechanical problem. The quantum-
mechanical Hamiltonian of the motion of charged or dual charged particle in the monopole
field is obtained by the substitution ∇a → ∇a + iAa in the Laplacian operator ' = ∇a∇a:

HA = − 1
2 (∇a + iAa)(∇a + iAa). (15)

In order to have a more obvious analogy with the quantum mechanical Kepler problem in
the spaces of constant curvature we will use four-dimensional notation. As we have seen (see
the introduction), when α = 0, the Hamiltonian (1) is proportional to the Casimir operator
of the O(4) group which is (L2 + P 2)/2R2. Here Pa = −i(x4∂a − xa∂4) are boost operators
on S3. The natural generalization of this operator on sphere in the presence of the Dirac-type
potential (14) is

Na = x4πa − xap4 (16)

where the operators πa = −i∂a +Aa and p4 = −i∂4 obey the following commutation relations:

[πa, xb] = −iδab [πa, πb] = iµεabc
xc

|x|3
[πa, p4] = 0 [p4, x4] = −i.

(17)

By direct calculations it can be verified that the Hamiltonian (15) commutes with the
generalized angular momentum vector:

Ja = εabcxbπc − µxa

|x| . (18)

Now we rewrite the Hamiltonian HA in a more convenient form. It should be noted that
the presence of the Dirac-type potential (14) breaks the O(4) symmetry of the problem. The
rhs of the commutator of two operators Na contains a term proportional to the field strength
and therefore operators Ja,Na do not form an o(4) algebra:

[Na,Nb] = iεabcJc + R2Fab [Ja,Nb] = iεabcNc [Ja, Jb] = iεabcJc (19)

where Fab = [πa, πb] is given in (17). But in spite of this the Hamiltonian HA can be presented
in the form similar to that of the Hamiltonian of the Kepler problem (1) for α = 0:

HA = J 2 + N2

2R2
− µ2

2R2
. (20)

The spectrum of this Hamiltonian obtained from the solution of the Schrödinger equation
depends on the eigenvalues of J 2. Therefore it is clear that, besides Ja (18), there are no
additional quantities that commute with the Hamiltonian (20). For this reason we consider a
modification of this problem.

In the analogy with the flat case, we introduce a Hamiltonian with a Zwanziger-like term
µ2/2|x|2:

Hµ = HA +
µ2

2|x|2 = J 2 + N2

2R2
+

µ2x2
4

2R2|x|2 . (21)

Then, using commutational relations (17) and (19) we find that

[Hµ,Na] = iµ
x4Ja

|x|3 . (22)
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By using this relation one can check that the Hamiltonian (21) commutes with the
generalized angular momentum operator (18) and additional constant of motion

Ãa = 1

2R
εabc(JbNc − NbJc). (23)

Operators Ãa and Ja obey the following commutation relations:

[Ãa, Ãb] = −2i

(
Hµ − J 2

R2
+

µ2

2R2

)
εabcJc

[Ja, Ãb] = iεabcÃc [Ja, Jb] = iεabcJc.
(24)

Now we add the Coulomb term to the Hamiltonian (21) and finally obtain the Hamiltonian of
the MIC-Kepler problem on the sphere:

Hα = J 2 + N2

2R2
+

µ2x2
4

2R2|x|2 − αx4

R|x| . (25)

Then we verify that this Hamiltonian commutes with the operators of generalized angular
momenta (18) and with the analogue of the Runge–Lenz vector

Aa = 1

2R
εabc(JbNc − NbJc) +

αxa

|x| . (26)

These operators satisfy the commutational relations of the cubic algebra:

[Aa,Ab] = −2i

(
Hα − J 2

R2
+

µ2

2R2

)
εabcJc

[Ja,Ab] = iεabcAc [Ja, Jb] = iεabcJc.
(27)

Furthermore, the following equalities hold:

A2 = 2Hα(J
2 − µ2 + 1) − 1

R2
J2(J2 − µ2 + 2) + α2 AJ = JA = −αµ. (28)

The deformed Casimir operators (see the introduction) for the algebra (27) are

C1d = cJ2 + dJ4 + A2 C2d = JA = AJ

c = −2Hα +
(2 − µ2)

R2
d = 1

R2

(29)

and therefore C1d = 2Hα(1 − µ2) + α2, C2d = −αµ. Thus the representation of the cubic
algebra realized by the MIC-Kepler problem on the sphere S3 is nondegenerate.

Note that for µ = 0 the MIC-Kepler problem becomes the Kepler problem on the sphere
S3. Let us take the limit R → ∞ keeping xa finite and x4/R → 1. The Hamiltonian (25)
then becomes the Hamiltonian of the flat MIC-Kepler problem. Since in this limit we have
Na/R → −ipa +Aa , the algebra (27) reduces to the o(4) algebra generated by the generalized
angular momentum operator and Runge–Lenz operator of the flat MIC-Kepler problem. Also
equalities (28) go over into those for the flat problem and the Casimir invariants C1d , C2d

transform into the invariants C1, C2 of the o(4) algebra of the flat MIC-Kepler problem.

3. The spectrum of the MIC-Kepler problem on the sphere

In this section we show that, by using the relations (27) and (28), one can find the spectrum
of the MIC-Kepler problem on the sphere. This algebraic treatment of the MIC-Kepler
problem in spaces of constant curvature is based on the approach commonly used for obtaining
infinitesimal operators of the unitary representations of the proper Lorentz group (see [25]).
A similar approach was applied for nonlinear algebras in papers [11, 12, 19, 21, 22].
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Let us introduce the linear combinations of the operators Aa and Ja: J± = J1 ± iJ2 and
A± = A1 ± iA2. Then the commutation relations of the algebra (27) take the form

[A±, A3] = ±2

(
Hα − J 2

R2
+

µ2

2R2

)
J±

[A+, A−] = −4

(
Hα − J 2

R2
+

µ2

2R2

)
J3

[J±, A3] = ∓A± [J±, A∓] = ±2A3 [J3, A±] = ±A±
[J±, A±] = [J3, A3] = 0 [J±, J3] = ∓J± [J+, J−] = 2J3.

(30)

Let ψEjm denote the common eigenfunctions of operators H, J 2, J3 with eigenvalues
E, j (j + 1),m, respectively. By analogy with [25], we then find from (30) that the operators
A±, A3 are given by

A±ψEjm = ±Cj

√
(j ∓ m)(j ∓ m − 1)ψE,j−1,m±1

±Cj+1

√
(j ± m + 1)(j ± m + 2)ψE,j+1,m±1

−Bj

√
(j ∓ m)(j ± m + 1)ψE,j,m±1

A3ψEjm = Cj

√
j 2 − m2ψE,j−1,m − Cj+1

√
(j + 1)2 − m2ψE,j+1,m − mBjψEjm

(31)

where Bj , Cj do not depend on m. For operators J±, J3 we have the conventional relations

J±ψEjm =
√
(j ∓ m)(j ± m + 1)ψE,j,m±1 J3ψEjm = mψEjm. (32)

From equations (30)–(32) the recurrence relations for Bj and Cj follow:

[(j + 2)Bj+1 − jBj ]Cj+1 = 0 (33)

(2j − 1)C2
j − (2j + 3)C2

j+1 − B2
j = 2

(
E − j (j + 1)

R2
+

µ2

2R2

)
. (34)

Pursuing further the analogy with representations of the Lorentz group [25], let j0 � 0
denote the lowest value of angular momentum belonging to the representation space of the
algebra (27). From equations (31) we can see that this definition is equivalent to

Cj0 = 0 Cj0+1 �= 0. (35)

Introducing the notation j (j + 1)Bj = τj , we find from equation (33) τj+1 − τj = 0, that
is, τj does not depend on j . Denoting this constant by j0c, we find

Bj = j0c

j (j + 1)
. (36)

Now, introducing the notation (2j − 1)(2j + 1)C2
j = σj , we obtain from equation (34)

σj − σj+1 = 2(2j + 1)

(
E − j (j + 1)

R2
+

µ2

2R2

)
+ j 2

0 c
2

(
1

j 2
− 1

(j + 1)2

)
(37)

and, as a consequence,

σj0 − σj =
j−1∑
k=j0

(σj − σj+1) = (j 2 − j 2
0 )

(
2E − j 2 + j 2

0 − 1

R2
+
µ2

R2
+
c2

j 2

)
. (38)

Since σj0 = 0, we arrive at

C2
j = − j 2 − j 2

0

4j 2 − 1

(
2E +

c2

j 2
− j 2 + j 2

0 − 1

R2
+
µ2

R2

)
. (39)
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Using equations (31), (32) and taking into account equation (36) we find (AJ)ψEjm

= (−j0c)ψEjm. Therefore equation (28) yields

cj0 = αµ. (40)

From equation (31) we find

AψEjm = [−j (2j − 1)C2
j − (j + 1)(2j + 3)C2

j+1 + j (j + 1)B2
j ]ψEjm. (41)

Taking into account equations (36), (39) and (40) we arrive at

AψEjm =
(

2E(j 2 + j − j 2
0 + 1) − j (j + 1)(j 2 + j − j 2

0 + 2)

R2

+
(µ2 − j 2

0 )(j
2 + j − j 2

0 + 1)

R2
+ c2

)
ψEjm. (42)

Then by comparing equations (28) and (42) we find that c2 = α2 and j 2
0 = µ2. Thus the

final expression for C2
j (see (39)) is

C2
j = − (j 2 − µ2)[2Ej 2R2 − j 2(j 2 − 1) + α2R2]

R2j 2(4j 2 − 1)
. (43)

Due to the the quantization condition for magnetic charge µ = ±0,± 1
2 ,±1, . . . one can

identify: j0 = |µ| and c = αµ/|µ|.
The next step consists in taking into account the condition requiring that conserved

operators be Hermitian. From this requirement, it follows that the coefficients Cj must satisfy
the conditions

C0 = C3
0 (44)

Cj = −C3
j j � 1. (45)

It can be seen from (43) that condition (44) is satisfied identically. In the spaceS3, condition (45)
is satisfied only if (i) j � |j0| = |µ| and (ii) if for a fixed value of E, quantum number j is
bounded from above, that is, j � jmax. Denoting jmax + 1 = N , we obtain CN = 0, that is
(see (43)), [2EN − (N2 −1)/R2 +α2/N2] = 0 and N > |µ|, whence it follows that the energy
levels are given by

EN = − α2

2N2
+
N2 − 1

2R2
N = |µ| + 1, |µ| + 2, |µ| + 3, . . . . (46)

When µ = 0 this spectrum coincides with the spectrum of the Kepler problem on the sphere
S3, and when R → ∞ the spectrum (46) goes over into the spectrum of the flat MIC-Kepler
problem.

4. Conclusion

The above considerations show that the quantum mechanical MIC-Kepler problem on the
sphere S3 has additional Runge–Lenz-type conserved quantities. These operators, together
with generalized angular momentum, form a nonlinear (cubic) algebra.

It was also shown that the two (deformed) Casimir invariants of this algebra are
nonzero. Therefore the MIC-Kepler problem on S3 realizes nondegenerate unitary irreducible
representations of the cubic algebra.

By using cubic algebra defined by equations (27)–(29) one is able to obtain the spectrum
of the MIC-Kepler problem in the space S3.
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We note that the spectrum of the MIC-Kepler problem in the space H 3 can be obtained
by the same method. The expression for the spectrum in this space is obtained by the formal
substitution R → iρ, where ρ is a real number.

The spectra obtained by algebraic consideration coincide with those obtained by solution
of the Schrödinger equation in these spaces.
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